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Abstract. In this paper we propose a new cause-effect nomvstric measure
applied to the task of Recognizing Textual Entaiiin&irst we searched over a
big corpus for sentences which contains the dismunarker “because” and
collected cause-effect pairs. The entailment reitiognis based on measure the
cause-effect relation between the text and the thgsis using the relative fre-
quencies of words from the cause-effect pairs. @easure outperformed the
baseline method, over the three test sets of thedA\ Recognizing Textual
Entailment Challenges (RTE). The measure shows tgobd at discriminate
over the “true” class. Therefore we develop a notasifier using a symmetric
measure and a non-symmetric measure as base ielassBo, our meta-
classifier has a competitive performance.

1 Introduction

One of the biggest challenges in Natural Languaged3sing (NLP) is to provide a
computer with the linguistic knowledge necessarguocessfully perform language-
based tasks. For example, the query “What doesd@éuganufacture?” a Question
Answering (QA) system must be able to recognizenfar, and answer which may
be expressed differently from the query. Thus fiext “Chrétien visited Peugeot’s
newly renovated car factory” entails the hypothedianswer from “Peugeot manu-
factures cars”. A fundamental phenomenon in NLfésvariability of a semantic ex-
pression, which the same meaning could be expressafter from different text.

A task underlying this phenomenon is the abilityRiecognize Textual Entailment.
This task is defined as a directional relationdigpween pair of text expressions, de-
noted by T -the entailing “Text” and H -the entdiftHypothesis”. We say that T en-
tails H if the meaning of H can be inferred frone tineaning of T as could typically
de interpreted by people [2].

Moreover, many NLP tasks have strong links to émeit: in Summarization
(SUM), a summary should be entailed by the textaptarases (PP) can be seen as
mutual entailment between a text T and a hypothdsig Information Extraction
(IE), the extracted information should also be #edaby the text; in QA the answer
obtained for one question after the Informationr&otion (IR) process must be en-
tailed by the supporting snippet of text.



To address this task, different methods have beepoged, with various degrees
of success. The classification of methods dependb®level of representation of the
T-H pair. Therefore the common criteria for entahh recognition were similarity
between T and H, or the coverage of H by T in laiepresentation methods and
lexical syntactic representation methods, and Hiléyato infer H from T, in the logi-
cal representation approach. Zanzotto et al alsasored the similarity between dif-
ferent T-H pairs, crosspair similarity. Some wof8ktried to detect non-entailment,
by looking for various kinds of mismatch betweea téxt and the hypothesis.

In this paper we propose a new cause-effect nommtnitc measure for entailment
recognition based on the causal relation betweenteikt and the hypothesis. The
causal relation is measure by using the relatieguencies of words in a cause-effect
set. These sets are extracted from a corpus bgléegrsentences containing the dis-
course marker “because”. Finally, we applied outhmeé on a meta-classifier.

The paper is structured as follows. An overviewhs related work in Section 2,
Section 3 describes the proposed measure. Sectioa ghown experiments, and a
comparison with previous results. Finally the cos@ns are presented in Section 5.

2 Redated Work

The RTE approaches can be classified dependinghinhwtextual entailment phe-
nomena address or the type of representak@vsl§ of language) of the T-H pair.

Thus each type of representation has operatioosdier to establish the entailment
decision (e.g., word matching in the lexical levete edit distance in the syntactic
level). The principal operations are similarity reeges between T-H pair representa-
tions. But many of the similarity measures are swtnim. So a symmetric measure
can not capture some of the aspects in theHTrelation. Because of if we altered the
entailment relation (i.e., ¥ T) a symmetric function will give us the same score
Therefore methods like [9] propose a non-symmeditnilarity measure, used in
RTE-1 Challenge.

Glickman [3] uses as definition: T entails H iffHP(T) > PH). The probabilities
are calculated on the base of Web. The accuratlyeo$ystem is the best for RTE-1
(56%).

Another non-symmetric method is that of Kouylek@y, who uses the definition:
T entails H if and only if there exists a sequeot&ansformations applied to T such
that H is obtained with a total cost below of ataier threshold. The following trans-
formations are allowed: Insertion: insert a nodmrfrthe dependency tree of H into
the dependency tree of T; Deletion: delete a noola the dependency tree of T; Sub-
stitution: change a node in the T into a node oEBch transformation has a cost and
the cost of edit distance between T and HTeH( is the sum of costs of all applied
transformations. The entailment score of a givanipaalculated as

score(,H) = ed({T,H),

where ed(H) is the cost of inserting the entire tree H. ibtbcore is bigger than a
learned threshold, the relation—#H holds. The accuracy of method is of 0.56.



In [9] an even “more non-symmetric” is proposedewtihe edit distance (which is
a Levenshtein modified distance) fulls the relation

ed(T,H) < edt.T),

Then the relation HH holds.

Other teams use a definition which in terms of espntation of knowledge as fea-
ture structures could be formulated as: T entailsf i subsumes T [9]. Even the
method used in [2] is a non-symmetric one, as #fmition used is: T entails H iff H
is not informative in respect to T.

A method of establishing the entailment relatiomldobe obtained using a non-
symmetric measure of similarity between two textspnted by Corley and Mihalcea
[1], the authors define the similarity between tidwetsT; andT; with respect td; as:
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Here the sets of open-class words (nouns, verfps;tagk and adverbs) in each text
segment are denoted WYST; PoS (PoS: Part of Speech) an8T; PoS. For a worgy
with a given PoS i;, the highest similarity of the words with the sapts in the
other textT; is denoted by maxSim).

Starting with this text-to-text similarity metrigye derive a textual entailment rec-
ognition system by applying the lexical refutatitveory presented above. As the hy-
pothesis H is less informative than the text T,d0FRUE pair the following relation
will take place:

sim(T,H) x T < sim(T,H) xH

This relation can be proven using the lexical rion [9]. A draft is the follow-
ing: to prove T-H it is necessary to prove that the set of form{ilgmegH} is lexi-
cal contradictory (they denote also by T and negtdets of disjunctive clauses of T
and negH).

3 Proposed Methods

A causal relation refers to the relation betweeawase and its effect or between regu-
larly correlated events. One type of coherenceioglave used is cause-effect, illus-
trated above. For example: (1) states the caugbdazffect given in (2).

1. There was bad weather at the airport

2. and so our flight got delayed.

The causal relation subsumes the cause and thenatjgn relations in Hobbs [3].
Hobbs’s cause relation holds if a discourse segrsgting a cause occurs before a
discourse segment stating an effect; an explanaélation holds if a discourse seg-
ment stating an effect occurs before a discourgeent stating a cause. The causal
relation is encoded by adding a direction. In gbrahis can be represented by a di-
rected arc going from cause to effect.



Fig. 1. Cause effect graph

Thus from Fig. 1 the causality is a directionahtignship such as the relationship
between a T-H pair. A non-symmetric similarity me@sbased on the count of co-
occurrences of causal lexical pairs could be adsvisl If a wordx is a necessary
cause of a worg, then the presence phecessarily implies the presencexof

3.1 Causal Non-symmetric M easure
The hypothesis behind our method is based on tineaf-H pair as a causal relation.

Where the text T is a cause and the hypothesistsl éfect (i.e., T causes H).
The general scheme of the method is showed in2Fig.

Mon-symmetric
similarity
measure

Entailment
decision

FALSE

Fig. 2. General data flow of our system

In Fig. 2 we show the general data flow of the psmal method. The non-
symmetric similarity measure is based on the cofimb-occurrences of causal lexi-
cal pairs from a C-E pairs extracted from a corpus.



Algorithm 1. New non-symmetric similarity measure

For each word t, in T

For each word h, in H
ce,=causal frequency(t,, h)
e,=causal frequency(h,)
max, = argmax(ce,/e,)

nonsymetric(T, H = = max,

As we se in the Algorithm 1 the first causal fregexe function is the count of
wordst; andh; related by the cue phrase (For example, a sentbncbecause...t) in
a corpus of C-E pairs and the second causal freguenction is the count of word h
in the C-E pairs, which gives us a non-symmetrarscBecause the co-occurrences
of T causes H is not the same like H causes T.

To each T-H pair the system measures the causdiorlbetween them and then
decides if the pair is true or false given a cert@itailment decision.

Algorithm 2. Entailment decision

if non-symetric(T,H > non-symetric(H T) then TRUE
el se FALSE

In Algorithm 2 we show that the entailment decistmasically penalize a T—H
pair when the H-T relation is stronger than theJH relation. Therefore the hy-
pothesis H is more probably an effect than the Textherefore it is more probable
that the text T implies the hypothesis H.

3.2 Symmetric and Non-symmetric M eta-classifier

It has been observed for related systems that dication of separately trained fea-
tures in the machine learning component can leahtoverall improvement in sys-
tem performance, in particular if features from areninformed component and shal-
low ones are combined.

One of the main problems when machine-learningsiflass are employed in prac-
tice is to determine whether classifications assigio new instances are reliable. The
meta-classifier approach is one of the simplest@hes to this problem. Given a
base classifiers, the approach is to learn a niassifier that predicts the correctness
of each instance classification of the base clizssifThe sources of the meta-training
data are the training instances. The meta-labahdhstance indicates reliable classi-
fication, if the instance is classified correctly & base classifier; otherwise, the meta-
label indicates unreliable classification. The mdtessifier plus the base classifiers
form one combined classifier. The classificatioteraf the combined classifier is to



assign a class predicted by the base classifiantmstance if the meta-classifier de-

cides that the classification is reliable.
Thus some questions on how to design a meta-dksaik:

» What type of base classifiers do we have to learmfeta-classifier, for what type
of data?

* What is the role of the accuracy of the base diassiin the whole scheme?

* How do we have to represent meta-data?

» How can we have to generate meta-data?

4 Experimental Setting

In this subsection we explain at detail some offlileeks in the Fig 2. First the pre-
processing we used to represent the T-H pair anmhsethe data used to create the C-
E pairs.

The preprocessing we used in each T-H pair is lasAfs:

* Tokenize.
* Quit stop words.

Normally, an early step of processing is to divide input text into units called to-
kens where each is eithemard or something else like a number or a punctuation
mark. This process is referred to as the treatwieptinctuation varies.

The system has just stripped the punctuation oet.cdhsider as word any object
within the occurrence of a withespace. The withesga the main clue used in Eng-
lish (RTE benchmark is in English). Finally the t&ym quits any stops words from a
stoplist. Common stop words atlee, from and could. These words have important
semantic functions in English, but they rarely citnite information if the criterion is
a simple word-by-word match.

The data we used to collect the frequency of thesalalexical pairs came from
sentences which contain the cue phiaessause. ). The sentences were striped in two
parts: one corresponding to the cause and onespumding to its effect to finally
form the cause-effect pairShe sentences were extracted from the Sketch Esgsie
tem over a big corpus (UkWAC from the Sketch EngineEhe Sketch Engine is a cor-
pus query system which allows the user to view wakedtches, thesaurally similar
words, and ‘sketch differences’, as well as thearfamiliar Corpus Query Systems
(CQS).

The answers to the questions of how to design a-classifier are as follows:

* We used symmetric and non-symmetric measures aschassifiers.
* We chose the best symmetric measure (we optimagacy).

* We represented the T-H pairs as a BoW.

* We used as meta-data the RTE Challenge test sets.

For the symmetric base classifier we tested betwleertosine, word overlap, and
the Bleu algorithm. Thus the cosine measure wabéehef all.

1 http://www.sketchengine.co.uk/



5 Experimental Results

As we see in previous sections we varied the enéait decision in order to prove
some differences between the uses of our non-syricnmeéasure. The experiment 1
was tested over the RTE-1 Challenge test set:

» Experiment 1: The system penalizes a pair if theTHrelation is greater than

T—H relation.

» Experiment 2: The system determines the entailrdentsion based on a meta-
classifier.

The outline of the information displayed on eacheriment is the next one:

» Contingency matrix.

» Evaluation matrix.

e Comparison with previous wok.
» Accuracy depending on task.

First, we present the method applied to the RTEHRE contingency table, Table 3
show how many times the method misclassified thé Fairs (i.e fp andtn) and how
many times the method its right. From this table caa obtain some measures to
evaluate the entailment decision.

Table 3. RTE-1 contingency matrix

| true false
true 257 245
false 143 155

Table 3 also shows that our approach tends torgay t

Table 4. RTE-1 evaluation measures

Accuracy Precision Recall F-measure
0.51 0.51 0.64 0.57

From Table 4 this approach obtains a better réleafi precision. Therefore the en-
tailment decision got right the proportion of thaeget items that the system selected.

Table 5. RTE-1 comparison with previous results

M ethod Accuracy
GLICKMAN 0.56
LEVENSHTEIN 0.53
C-E 0.51
BLEU 0.49

To compare our approach with previous works wetheeaccuracy measure (i.e.
the most common measure in the RTE Challenge).Téty@oged measure is compared
to non-symmetric measures. We compare out appnibkh



» Bleu algorithm RTE baseline [8]
» Probabilistic measure [3]
» Levenshthein modified measure [9]

In Table 5 the results are show. Thus the besiofdickman. Our measure is the
last one compare to the non-symmetric measuresn@asure only outperforms the
Bleu algorithm.

RTE-1 Accuracy depending on task
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Fig. 3. RTE-1 comparison with previous results Isksa

The results of our approach were the lowest betwleemon-symmetric measures
in general. So if we make a comparison dependingash task. We see that our
measure outperforms the other non-symmetric messarsome of the tasks. These
tasks are:

« QA
* IR.
o MT.

The results of the meta-classifier over the RTEIEhge are: In the RTE-1 and
RTE-2 the results did not achieve great differeragainst the Experiment 1. Thus in
the RTE-3 the system achieve the best accuracly afimexperiments with 0.61.

In the RTE-3 we achieve the better results for approach, comparing it to the
other results in our research. Thus the resulth¢oRTE-3 are competitive to other
participants on the same Challenge.

The percentage of the coverage of the different loéesssifiers over the RTE-1 de-
velopment data is as follows: Most of the T-H paiosild be resolved either by the
symmetric and the non-symmetric measures (36.6F#)owing the examples re-
solved by the symmetric measure (29.38%) and tmesgmmetric at last (14.12%).
Finally the 18.88% of the instances could not s®ikeed by any measure.



Table 6. RTE-3 meta-classifier contengiency matrix

| true  false
true 264 163
false 146 227

Table 7. RTE-3 meta-classifier evaluation measure

Accur acy Precision Recall F-measure
0.61 0.61 0.64 0.63

RTE-3 Accuracy depending on task
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Fig. 4. RTE-3 meta-classifier comparison with base classifby tasks

6 Conclusion and Future Work

We proposed a non-symmetric similarity measurdéRTE task. Therefore our un-
supervised method is no language dependent.

We have shown that our measure has a lower acctinacythe state of the art
methods and outperforms the RTE baseline. Thes#sese significant because they
are based on a very simple algorithm that relies@moccurrences of causal pairs.

We once more confirmed that the web could be useallaxical resource for RTE
(i.e. The Sketch Engine developers have built tbefpora from the Web). Also our
meta-classifier has a competitive accuracy of Otléd;average accuracy for the RTE-
3is of 0.61.



In our future work we will explore the use of difémt meta-features for the meta-
classifier, as well as linguistically-motivated mdéatures (such as a syntactic unit)
and evaluate our method against the RTE machimeitggapproaches.
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