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Abstract. In this paper we propose a new cause-effect non-symmetric measure 
applied to the task of Recognizing Textual Entailment .First we searched over a 
big corpus for sentences which contains the discourse marker “because” and 
collected cause-effect pairs. The entailment recognition is based on measure the 
cause-effect relation between the text and the hypothesis using the relative fre-
quencies of words from the cause-effect pairs. Our measure outperformed the 
baseline method, over the three test sets of the PASCAL Recognizing Textual 
Entailment Challenges (RTE). The measure shows to be good at discriminate 
over the “true” class. Therefore we develop a meta-classifier using a symmetric 
measure and a non-symmetric measure as base classifiers. So, our meta-
classifier has a competitive performance. 

1 Introduction 

One of the biggest challenges in Natural Language Processing (NLP) is to provide a 
computer with the linguistic knowledge necessary to successfully perform language-
based tasks. For example, the query “What does Peugeot manufacture?” a Question 
Answering (QA) system must be able to recognize, or infer, and answer which may 
be expressed differently from the query. Thus from text “Chrétien visited Peugeot’s 
newly renovated car factory” entails the hypothesized answer from “Peugeot manu-
factures cars”. A fundamental phenomenon in NLP is the variability of a semantic ex-
pression, which the same meaning could be expressed or infer from different text. 

 A task underlying this phenomenon is the ability to Recognize Textual Entailment. 
This task is defined as a directional relationship between pair of text expressions, de-
noted by T -the entailing “Text” and H -the entailed “Hypothesis”. We say that T en-
tails H if the meaning of H can be inferred from the meaning of T as could typically 
de interpreted by people [2]. 

Moreover, many NLP tasks have strong links to entailment: in Summarization 
(SUM), a summary should be entailed by the text; Paraphrases (PP) can be seen as 
mutual entailment between a text T and a hypothesis H; in Information Extraction 
(IE), the extracted information should also be entailed by the text; in QA the answer 
obtained for one question after the Information Extraction (IR) process must be en-
tailed by the supporting snippet of text. 



To address this task, different methods have been proposed, with various degrees 
of success. The classification of methods depends on the level of representation of the 
T-H pair. Therefore the common criteria for entailment recognition were similarity 
between T and H, or the coverage of H by T in lexical representation methods and 
lexical syntactic representation methods, and the ability to infer H from T, in the logi-
cal representation approach. Zanzotto et al also measured the similarity between dif-
ferent T-H pairs, crosspair similarity. Some works [6] tried to detect non-entailment, 
by looking for various kinds of mismatch between the text and the hypothesis. 

In this paper we propose a new cause-effect non-symmetric measure for entailment 
recognition based on the causal relation between the text and the hypothesis. The 
causal relation is measure by using the relative frequencies of words in a cause-effect 
set. These sets are extracted from a corpus by searching sentences containing the dis-
course marker “because”. Finally, we applied our method on a meta-classifier. 

The paper is structured as follows. An overview of the related work in Section 2, 
Section 3 describes the proposed measure. Section 4 we shown experiments, and a 
comparison with previous results. Finally the conclusions are presented in Section 5. 

2 Related Work 

The RTE approaches can be classified depending in which textual entailment phe-
nomena address or the type of representation (levels of language) of the T-H pair. 

Thus each type of representation has operations in order to establish the entailment 
decision (e.g., word matching in the lexical level, tree edit distance in the syntactic 
level). The principal operations are similarity measures between T-H pair representa-
tions. But many of the similarity measures are symmetric. So a symmetric measure 
can not capture some of the aspects in the T→H relation. Because of if we altered the 
entailment relation (i.e., H→T) a symmetric function will give us the same score. 
Therefore methods like [9] propose a non-symmetric similarity measure, used in 
RTE-1 Challenge. 

Glickman [3] uses as definition: T entails H iff P(H |T) > P(H). The probabilities 
are calculated on the base of Web. The accuracy of the system is the best for RTE-1 
(56%). 

Another non-symmetric method is that of Kouylekov [7], who uses the definition: 
T entails H if and only if there exists a sequence of transformations applied to T such 
that H is obtained with a total cost below of a certain threshold. The following trans-
formations are allowed: Insertion: insert a node from the dependency tree of H into 
the dependency tree of T; Deletion: delete a node from the dependency tree of T; Sub-
stitution: change a node in the T into a node of H. Each transformation has a cost and 
the cost of edit distance between T and H, ed(T, H) is the sum of costs of all applied 
transformations. The entailment score of a given pair is calculated as 

score(T,H) = ed(T,H), 

where ed(·,H) is the cost of inserting the entire tree H. If this score is bigger than a 
learned threshold, the relation T →H holds. The accuracy of method is of 0.56. 



In [9] an even “more non-symmetric” is proposed: when the edit distance (which is 
a Levenshtein modified distance) fulls the relation: 

ed(T,H) < ed(H,T), 

Then the relation T→H holds. 
Other teams use a definition which in terms of representation of knowledge as fea-

ture structures could be formulated as: T entails H iff H subsumes T [9]. Even the 
method used in [2] is a non-symmetric one, as the definition used is: T entails H iff H 
is not informative in respect to T. 

A method of establishing the entailment relation could be obtained using a non-
symmetric measure of similarity between two texts presented by Corley and Mihalcea 
[1], the authors define the similarity between the texts Ti and Tj with respect to Ti as: 
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Here the sets of open-class words (nouns, verbs, adjective and adverbs) in each text 
segment are denoted by WSTi PoS (PoS: Part of Speech) and WSTj PoS. For a word wk 
with a given PoS in Ti, the highest similarity of the words with the same pos in the 
other text Tj is denoted by maxSim(wk). 

Starting with this text-to-text similarity metric, we derive a textual entailment rec-
ognition system by applying the lexical refutation theory presented above. As the hy-
pothesis H is less informative than the text T, for a TRUE pair the following relation 
will take place: 

sim(T,H) × T < sim(T,H) × H 

This relation can be proven using the lexical refutation [9]. A draft is the follow-
ing: to prove T→H it is necessary to prove that the set of formulas {T; negH} is lexi-
cal contradictory (they denote also by T and negH the sets of disjunctive clauses of T 
and negH). 

3 Proposed Methods 

A causal relation refers to the relation between a cause and its effect or between regu-
larly correlated events. One type of coherence relation we used is cause-effect, illus-
trated above. For example: (1) states the cause for the effect given in (2). 
1. There was bad weather at the airport 
2. and so our flight got delayed. 

The causal relation subsumes the cause and the explanation relations in Hobbs [3]. 
Hobbs’s cause relation holds if a discourse segment stating a cause occurs before a 
discourse segment stating an effect; an explanation relation holds if a discourse seg-
ment stating an effect occurs before a discourse segment stating a cause. The causal 
relation is encoded by adding a direction. In a graph, this can be represented by a di-
rected arc going from cause to effect.  



 

Fig. 1. Cause effect graph 

Thus from Fig. 1 the causality is a directional relationship such as the relationship 
between a T-H pair. A non-symmetric similarity measure based on the count of co-
occurrences of causal lexical pairs could be as follows: If a word x is a necessary 
cause of a word y, then the presence of y necessarily implies the presence of x.  

3.1 Causal Non-symmetric Measure 

The hypothesis behind our method is based on treat the T-H pair as a causal relation. 
Where the text T is a cause and the hypothesis H is its effect (i.e., T causes H).  

The general scheme of the method is showed in Fig. 2: 

 

Fig. 2. General data flow of our system 

In Fig. 2 we show the general data flow of the proposed method. The non-
symmetric similarity measure is based on the count of co-occurrences of causal lexi-
cal pairs from a C-E pairs extracted from a corpus.  



Algorithm 1. New non-symmetric similarity measure 

As we se in the Algorithm 1 the first causal frequency function is the count of 
words ti and hi related by the cue phrase (For example, a sentence, h…because…t) in 
a corpus of C-E pairs and the second causal frequency function is the count of word hi 
in the C-E pairs, which gives us a non-symmetric score. Because the co-occurrences 
of T causes H is not the same like H causes T. 

To each T-H pair the system measures the causal relation between them and then 
decides if the pair is true or false given a certain entailment decision.  

Algorithm 2. Entailment decision 

In Algorithm 2 we show that the entailment decision basically penalize a T—H 
pair when the H→T relation is stronger than the T→H relation. Therefore the hy-
pothesis H is more probably an effect than the text T. Therefore it is more probable 
that the text T implies the hypothesis H. 

3.2 Symmetric and Non-symmetric Meta-classifier 

It has been observed for related systems that a combination of separately trained fea-
tures in the machine learning component can lead to an overall improvement in sys-
tem performance, in particular if features from a more informed component and shal-
low ones are combined.  

One of the main problems when machine-learning classifiers are employed in prac-
tice is to determine whether classifications assigned to new instances are reliable. The 
meta-classifier approach is one of the simplest approaches to this problem. Given a 
base classifiers, the approach is to learn a meta-classifier that predicts the correctness 
of each instance classification of the base classifiers. The sources of the meta-training 
data are the training instances. The meta-label of an instance indicates reliable classi-
fication, if the instance is classified correctly by a base classifier; otherwise, the meta-
label indicates unreliable classification. The meta-classifier plus the base classifiers 
form one combined classifier. The classification rule of the combined classifier is to 

For each word ti in T 

 For each word hj in H 

  cej=causal frequency(ti,hj) 

  ej=causal frequency(hj) 

 maxi = argmax(cej/ej) 

nonsymetric(T,H)= Σ maxi 

if non-symmetric(T,H) > non-symetric(H,T) then TRUE 

else FALSE 



assign a class predicted by the base classifier to an instance if the meta-classifier de-
cides that the classification is reliable. 

Thus some questions on how to design a meta-classifier are: 
• What type of base classifiers do we have to learn for meta-classifier, for what type 

of data? 
• What is the role of the accuracy of the base classifiers in the whole scheme? 
• How do we have to represent meta-data? 
• How can we have to generate meta-data? 

4 Experimental Setting 

In this subsection we explain at detail some of the blocks in the Fig 2. First the pre-
processing we used to represent the T-H pair and second the data used to create the C-
E pairs. 

The preprocessing we used in each T-H pair is as follows: 
• Tokenize. 
• Quit stop words. 

Normally, an early step of processing is to divide the input text into units called to-
kens where each is either a word or something else like a number or a punctuation 
mark. This process is referred to as the treatment of punctuation varies.  

The system has just stripped the punctuation out. We consider as word any object 
within the occurrence of a withespace. The withespace is the main clue used in Eng-
lish (RTE benchmark is in English). Finally the system quits any stops words from a 
stoplist. Common stop words are the, from and could. These words have important 
semantic functions in English, but they rarely contribute information if the criterion is 
a simple word-by-word match. 

The data we used to collect the frequency of the causal lexical pairs came from 
sentences which contain the cue phrase because. ). The sentences were striped in two 
parts: one corresponding to the cause and one corresponding to its effect to finally 
form the cause-effect pairs. The sentences were extracted from the Sketch Engine sys-
tem over a big corpus (ukWAC from the Sketch Engine1). The Sketch Engine is a cor-
pus query system which allows the user to view word sketches, thesaurally similar 
words, and ‘sketch differences’, as well as the more familiar Corpus Query Systems 
(CQS). 

The answers to the questions of how to design a meta-classifier are as follows: 
• We used symmetric and non-symmetric measures as base classifiers. 
• We chose the best symmetric measure (we optimize accuracy). 
• We represented the T-H pairs as a BoW.  
• We used as meta-data the RTE Challenge test sets. 

For the symmetric base classifier we tested between the cosine, word overlap, and 
the Bleu algorithm. Thus the cosine measure was the bet of all. 

                                                           
1 http://www.sketchengine.co.uk/ 



5 Experimental Results 

As we see in previous sections we varied the entailment decision in order to prove 
some differences between the uses of our non-symmetric measure. The experiment 1 
was tested over the RTE-1 Challenge test set: 
• Experiment 1: The system penalizes a pair if the H→T relation is greater than 

T→H relation. 
• Experiment 2: The system determines the entailment decision based on a meta-

classifier. 
The outline of the information displayed on each experiment is the next one: 

• Contingency matrix. 
• Evaluation matrix. 
• Comparison with previous wok. 
• Accuracy depending on task. 

First, we present the method applied to the RTE-1. The contingency table, Table 3 
show how many times the method misclassified the T-H pairs (i.e. fp and tn) and how 
many times the method its right. From this table we can obtain some measures to 
evaluate the entailment decision. 

Table 3. RTE-1 contingency matrix 

Table 3 also shows that our approach tends to say true. 

Table 4. RTE-1 evaluation measures 

From Table 4 this approach obtains a better recall than precision. Therefore the en-
tailment decision got right the proportion of the target items that the system selected.  

Table 5. RTE-1 comparison with previous results 

To compare our approach with previous works we use the accuracy measure (i.e. 
the most common measure in the RTE Challenge).The proposed measure is compared 
to non-symmetric measures. We compare out approach with: 

 true false 
true 257 245 
false 143 155 

Accuracy Precision Recall F-measure 
0.51 0.51 0.64 0.57 

Method Accuracy 
GLICKMAN 0.56 

LEVENSHTEIN 0.53 
C-E 0.51 

BLEU 0.49 



• Bleu algorithm RTE baseline [8]  
• Probabilistic measure [3] 
• Levenshthein modified measure [9] 

In Table 5 the results are show. Thus the best one is Glickman. Our measure is the 
last one compare to the non-symmetric measures. Our measure only outperforms the 
Bleu algorithm. 

 

Fig. 3. RTE-1 comparison with previous results by tasks 

The results of our approach were the lowest between the non-symmetric measures 
in general. So if we make a comparison depending on each task. We see that our 
measure outperforms the other non-symmetric measures in some of the tasks. These 
tasks are: 
• QA. 
• IR. 
• MT. 

The results of the meta-classifier over the RTE Challenge are: In the RTE-1 and 
RTE-2 the results did not achieve great differences against the Experiment 1. Thus in 
the RTE-3 the system achieve the best accuracy of all our experiments with 0.61. 

In the RTE-3 we achieve the better results for our approach, comparing it to the 
other results in our research. Thus the results to the RTE-3 are competitive to other 
participants on the same Challenge. 

The percentage of the coverage of the different base classifiers over the RTE-1 de-
velopment data is as follows: Most of the T-H pairs could be resolved either by the 
symmetric and the non-symmetric measures (36.62%). Following the examples re-
solved by the symmetric measure (29.38%) and the non-symmetric at last (14.12%). 
Finally the 18.88% of the instances could not be resolved by any measure. 



Table 6. RTE-3 meta-classifier contengiency matrix 

 true false 
true 264 163 
false 146 227 

Table 7. RTE-3 meta-classifier evaluation measure 

Accuracy Precision Recall F-measure 
0.61 0.61 0.64 0.63 

 

Fig. 4. RTE-3 meta-classifier comparison with base classifiers by tasks 

6 Conclusion and Future Work 

We proposed a non-symmetric similarity measure to the RTE task. Therefore our un-
supervised method is no language dependent.  

We have shown that our measure has a lower accuracy than the state of the art 
methods and outperforms the RTE baseline. These results are significant because they 
are based on a very simple algorithm that relies on co-occurrences of causal pairs. 

We once more confirmed that the web could be used as a lexical resource for RTE 
(i.e. The Sketch Engine developers have built their corpora from the Web). Also our 
meta-classifier has a competitive accuracy of 0.61; the average accuracy for the RTE-
3 is of 0.61.  



In our future work we will explore the use of different meta-features for the meta-
classifier, as well as linguistically-motivated meta-features (such as a syntactic unit) 
and evaluate our method against the RTE machine learning approaches. 
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